
Introduction

Skeletal muscle exhibits a remarkable capacity for long-term
adaptations to endurance exercise, which are mediated by
changes in gene expression. Despite the profound effects of en-
durance exercise on muscle phenotype, little is known about
the intracellular mechanisms that link the “exercise signals” to
the modulation of gene expression [1,43].

c-Fos is an intracellular immediate-early protein, which is usual-
ly induced very early in response to a variety of extracellular sig-
nals. c-Fos, in complex with a member of the Jun family, consti-
tutes activator protein-1 (AP-1), a transcription factor implicated
in cell proliferation, differentiation and transformation [38]. AP-
1 has also been associated with mitochondrial biogenesis [25],

responses to myocellular injury [27], and apoptotic cell death
[38], all of which take place in skeletal muscle after endurance
exercise [25,27,42]. Additionally, AP-1 is thought to regulate the
expression of certain genes [3,6,24,26,41,44] known to be in-
duced in response to exercise or increased contractile activity in
general [22–24,29,40]. However, the role of AP-1 and, hence, c-
Fos in the cellular adaptations taking place in skeletal muscle
after exercise is largely unknown.

In recent years, many studies have reported that modi-
fied contractile activity alters the expression of the c-fos
gene in skeletal muscle of animals and humans
[2,5,12,14,19,28,30,33,35,39,43,48,50,51]. Most of these stud-
ies have used animal models that do not mimic human physical
activity adequately and have presented results at themRNA level
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Abstract

We investigated the effect of an acute bout of endurance exercise
on c-Fos protein levels in the extensor digitorum longus muscle
of trained and untrained rats. Fifty rats were equally divided into
a trained and an untrained group. Rats of the trained group ran
on a treadmill 45min/day for 5 days. On the sixth day, 5 rats
were killed without exercise, while the remaining 20 ran as
above and were killed 0, 3, 6, and 12 h post-exercise (5 rats at
each time point). In the untrained group, 5 rats were killed with-
out exercise, while the remaining 20 ran as above only once and
were killed at the same time points as the trained group. Wes-
tern blotting demonstrated no significant changes in c-Fos pro-
tein levels in the untrained group. On the contrary, in the trained

group, there was a significant increase at 6 and 12 h compared to
3 h post-exercise. The levels of the protein in the trained rats
were above the corresponding levels in the untrained ones at all
time points, although these differences reached statistical signif-
icance only immediately, 6 h and 12 h post-exercise. These re-
sults show that trained skeletal muscle exhibits increased levels
of c-Fos, probably as a cumulative result of changes occurring
during recovery from each exercise bout, and greater c-Fos re-
sponse after acute endurance exercise compared to untrained
skeletal muscle.
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immediately after the end of contractile activity. To our knowl-
edge, only two relevant studies utilized an animal model that
closely mimics human physical exercise, i. e., treadmill running
[14,30], and one used humans [39]. Of these studies, only the lat-
ter measured c-Fos protein, which is important, since changes in
mRNA levels after increased contractile activity are not always
reflected on protein levels [7,36]. Moreover, there are no pub-
lished data on the effect of repeated exercise bouts on c-Fos pro-
tein. Considering also the fact that acute exercise in rats trained
for 5 days did not increase c-fosmRNA, contrary to untrained an-
imals [30], it seemed interesting to examine the temporal ex-
pression pattern of c-Fos after acute endurance exercise as a
step towards defining its role in the adaptations to modified con-
tractile activity. Therefore, the aims of the present research were
to investigate: (i) the effect of an acute bout of endurance exer-
cise on c-Fos protein levels in the extensor digitorum longus
(EDL) muscle of untrained rats, (ii) the effect of 5 days of training
on c-Fos protein levels, and (iii) the effect of acute endurance ex-
ercise on c-Fos protein levels in rats trained for 5 days.

Materials and Methods

Animals
Fifty male Wistar rats (9 weeks old, weighing 250–280 g) were
supplied by the Theagenion Cancer Hospital (Thessaloniki,
Greece) and housed in the same hospital. The rats lived in groups
of five per cage at 22 8C, on a 12:12-h light-dark cycle, and were
allowed free access to water and rodent chow. The rats were
maintained according to the European Union guidelines for the
care and use of laboratory animals.

Exercise protocol
All rats that exercised (45 out of the 50) were habituated to the
exercise protocol by running on a motor-driven treadmill at a
speed of 12m/min, at 0% grade for 5 min before the first exercise
bout. The rats were equally divided into a trained and an un-
trained group. The rats of the trained group ran on the treadmill
at a speed of 20 m/min, at 0% grade for 45min/day for 5 days.
The exercise intensity chosen corresponds to 55–60% of maximal
oxygen consumption [4]. The 5-day protocol used – with minor
differences – was found capable of eliciting significant adapta-
tions in rat skeletal muscle of rats of similar age [15,16]. On the
sixth day, 5 rats were killed without exercise by exposure to
ether, while the remaining 20 ran as above and were killed 0, 3,
6, and 12 h post-exercise (5 rats at each time point). In the un-
trained group, 5 rats were killed without exercise, while the re-
maining 20 ran according to the same protocol only once and
were killed at the same time points as above (5 rats at each time
point). Mild electrical shocks (0.8–1.0mA) were used sparingly
to motivate the animals to run. All procedures took place at the
same time of the day (12:00–13:00).

Muscle dissection
The EDL muscle was surgically removed from the right hind limb
of each animal and was immediately immersed in liquid nitro-
gen. This muscle belongs to the family of dorsiflexors of the ankle
joint and is activated during the swing phase of the step cycle in

the rat as measured by electromyography [45]. Furthermore,
many studies on rats have used this muscle and reported signifi-
cant diverse adaptations to treadmill training [13,20,31].

Protein extraction
For analysis, the frozen muscle was pulverized with mortar and
pestle in liquid nitrogen and stored at –80 8C until analysis. The
muscle powder was homogenized in RIPA buffer containing
0.5% sodium deoxycholate, 1% Nonidet P40, 0.1% SDS, 10mmol/
L sodium orthovanadate, 10mg/mL aprotinin, and 10mg/mL
phenylmethysulfonyl fluoride in PBS (10mmol/L sodium phos-
phate, 138mmol/L NaCl, 2.7mmol/L KCl, pH 7.4). The homoge-
nate was then centrifuged at 12,000 N g for 15min. Homogeniza-
tion and centrifugation were performed at 4 8C. Total protein in
the supernatant was assayed using a commercially available kit
(Sigma, St. Louis, MO) based on the Bradford method.

Electrophoresis
Protein extracts were prepared for electrophoresis by adjusting
the protein concentration to 3 Og/OL with RIPA buffer, followed
by the addition of 5 OL of sample buffer (250mmol/L Tris-HCl,
pH 6.8, 10% SDS, 50% glycerol, 6.25% 2-mercaptoethanol and
0.06% bromphenol blue) to 10 OL of extract. Proteins were sep-
arated in SDS-polyacrylamide pre-cast gels with a 10–20% gra-
dient (Owl Separation Systems, Portsmouth, NH). Kaleidoscope
prestained molecular weight markers (Bio-Rad, Richmond, CA)
were included in each gel. Electrophoresis was performed in a
P8DS electrophoresis apparatus (Owl Separation Systems) at
100 V and stopped when the dye front reached the bottom of
the gels.

Western blotting
Proteins were transferred from the gels to polyvinylidene fluo-
ride membranes (Millipore, Bedford, MA) by using a Mini Trans-
Blot Cell (Bio-Rad) at 100 V for 1 h. After transfer, blots were
blocked overnight with PBS containing 0.1% Tween-20 (PBS-T)
and 5% bovine serum albumin (Sigma). The membranes were
then incubated with a rabbit polyclonal antibody against c-Fos,
which recognizes amino acid residues 4–17 (Ab-2; Oncogene
Research Products, Cambridge, MA), in a 1:2500 dilution with
PBS-T for 1 h. This was followed by an one-hour incubation with
a horseradish peroxidase-conjugated anti-rabbit antibody
(Amersham, Buckinghamshire, England) in a 1:5000 dilution
with PBS-T. Finally, blots were developed using the Super SignalP

West Pico Chemiluminescence Substrate (Pierce, Rockford, IL).
Developed bands were photographed with a DC 120 camera (Ko-
dak, New York, NY) and quantified by a computerized densito-
metric image-analysis software (Biosure, Athens, Greece). To ac-
count for gel-to-gel variation, data were normalized according to
control samples that were included in all gels [11,52].

Statistical analysis
Data are expressed as themean Q SEM. c-Fos levels were compar-
ed through two-way (training N time) ANOVA. Post-hoc pairwise
comparisons were performed through simple main effects. The
level of statistical significance was set at a = 0.05.
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Results

The exercise-induced changes in c-Fos protein levels in the EDL
muscle of trained for 5 days and untrained rats are presented in
Fig.1. Western blots demonstrated a biphasic change in both
groups, consisting of a decrease followed by an increase. The in-
teraction was not significant, but both the main effects of train-
ing and time were (p < 0.001 and p = 0.002, respectively). There
were no significant differences between time points in the un-
trained group, but, in the trained group, the values at 6 and 12 h
after exercise were significantly higher than the one at 3 h
(p = 0.016 and 0.004, respectively). Interestingly, both groups ex-
hibited the highest level of c-Fos (25–51% above the correspond-
ing basal level) 12 h after exercise. The levels of the protein in the
trained rats were above the corresponding levels in the un-
trained ones at all time points, although these differences
reached statistical significance only immediately (p = 0.013), 6 h
(p < 0.001), and 12 h (p < 0.001) after exercise.

Discussion

The present study aimed at examining the effect of acute en-
durance exercise on c-Fos protein levels in trained and un-
trained rats. To our knowledge, this is the first attempt to
study the response of c-Fos protein to training. Most of the
studies on the effect of modified contractile activity on c-fos
expression have presented results solely at the mRNA level
[2,5,12,14,19,30,33,35,43,48,50,51]. Moreover, the majority
of these studies have used animal models that do not mimic
human exercise closely enough to allow for an extrapolation
of their results to humans [2,5,12,19,33,35,43,48,50,51].

Hence, we used treadmill running as the means to modify
the contractile activity of our experimental animals, since
this model is thought to imitate human physical activity [7].

In both trained and untrained animals, we found a somewhat un-
expected kinetics of c-Fos protein, characterized by initial reduc-
tion and later induction (though not fully justified statistically).
This biphasic progress is difficult to interpret, since data relevant
to protein kinetics during recovery are scanty, owing to the fact
that most studies have only determined protein levels immedi-
ately post-exercise. Nevertheless, it has become apparent in re-
cent years that changes in gene expression may indeed occur
during recovery from exercise (e.g., [34,37]). Indeed, Booth et
al. [8] have argued that frequently more than one time-point
are needed to ensure the direction of gene expression after acute
exercise. As for the effect of exercise specifically on c-Fos protein
kinetics, we were able to detect only one study [39] in which the
protein was measured at multiple time points during recovery
(up to 3 h after treadmill running). In that study, the researchers
found an increase of c-Fos protein in human vastus lateralis mus-
cle during recovery from treadmill running. On the other hand,
one study has reported diminished levels of c-fos mRNA and c-
Fos protein in human trabecular meshwork cells shortly after
mechanical stretch, followed by increases after stretch release
[49]. Furthermore, Neufer et al. [33] reported that, although c-
fos mRNA decreased immediately after 7 days of intermittent
low-frequency electrical stimulation of the tibialis anterior mus-
cle of rabbits, it transiently increased 2–8 h later. It is interesting
to note that c-Fos showed a biphasic (decrease followed by in-
crease) response also in spermatocytes exposed to a drug caus-
ing apoptosis [46]. The biphasic response of c-Fos found in our
study emphasises the value of measuring gene expression at
multiple time-points after exercise and implies that erroneous
conclusions may be drawn from single measurements.

Both groups of rats exhibited the highest level of c-Fos protein
12 h after exercise (though not significantly higher than base-
line). This pattern may underlie the mechanism of increased c-
Fos protein levels in the trained rats. As far as we know, this is
the first demonstration that brief training can increase the levels
of c-Fos protein. Increased levels of c-Fos have been also reported
after continuous low-frequency electrical stimulation of tibialis
anterior [28] and latissimus dorsi muscle of rabbits [35].

Using an experimental procedure similar to the one in the pres-
ent study, Murakami et al. [30] found increases in c-fosmRNA in
soleus muscle following treadmill running in untrained but not
in trained for 5 days rats. To reconcile these findings with ours,
we have to assume that the increase in c-Fos protein occurs
through greater efficiency of translation and/or post-translation-
al modifications.

Another finding of our study was the greater c-Fos response of
trained vs untrained skeletal muscle to acute endurance exercise.
What caused this greater response and what is its biological sig-
nificance? One of the main elements of the c-fos promoter is the
serum response element (SRE), which is occupied by either a het-
erodimer of the serum response factor (SRF) and the ternary
complex factor or a homodimer of two SRF [9,47]. A series of
studies have shown that SRF expression, at both the mRNA and

Fig. 1 A Time course of changes in the amount of c-Fos protein rela-
tive to total protein in the EDL muscle of trained for 5 days (o) and un-
trained rats (l) in response to acute exercise. Themean optical density
of the bands corresponding to untrained sedentary rats was set as one.
Error bars denote SEM. Asterisks denote significant differences
(P < 0.05) between different time points in the same group or between
the two groups at the same time point. See Results for exact P values.
B A representative Western blot of c-Fos protein.
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protein levels, is increased during overload-induced hypertrophy
of skeletal muscle of chicken [10], rooster [17] and rat [21]. More-
over, a recent study found the activity of the kinase that activates
SRF to be significantly increased after short-term wheel running
[18]. These observations suggest that, after repeated bouts of ex-
ercise, the “signals” of a subsequent bout may be transferred to
target genes (e.g., c-fos) more efficiently because of an enlarge-
ment of the “exercise signalling pathway” (part of which, in this
example, may be the SRF). The probable physiological value of
the observed greater exercise-induced increase of c-Fos in train-
ed rats compared to untrained ones is that c-fos expression be-
comes more sensitive to environmental changes, a situation
that would be advantageous for the response to a subsequent ex-
ercise session.

The fact that, according to the present study, exercise increased
the c-Fos protein levels, combined with the reported induction
of c-jun after acute endurance exercise [1,30,39], might contrib-
ute to a higher content of Fos/Jun heterodimers in exercising
muscle and thus increased AP-1 binding activity. Actually, Hol-
lander et al. [24], using electrophoretic mobility shift assay, re-
ported upregulation of AP-1 binding activity after a single bout
of exercise in rat skeletal muscle. Increases in AP-1 binding activ-
ity can lead to subsequent alterations in the expression of AP-1-
dependent genes. These include cytochrome c [3], skeletal a-ac-
tin [6], manganese-containing superoxide dismutase [24], myo-
sin light chains [26], vascular endothelial growth factor [41], and
lactate dehydrogenase [44], which are known to be induced in
skeletal muscle during or after exercise [22–24,29,40]. In addi-
tion, it is probable that c-Fos plays a role in the apoptotic events
taking place in skeletal muscle after exercise [42], since it may be
a component of the regulatory pathway leading to apoptosis
[38]. We have to mention that most of the above studies try to
ascribe a role to c-Fos based on time sequences of intracellular
events. However, caution is warranted in interpreting these find-
ings, since the time course of activation of c-Fos and downstream
targets suggests, but in no way demonstrates, a link between
them in response to modified contractile activity.

In conclusion, our findings suggest that the skeletal muscle of
rats trained for a rather brief period of 5 days exhibited increased
levels of c-Fos protein, probably to account for an increased need
of this protein during periods of intense physical activity. Fur-
thermore, the present results support the hypothesis that adap-
tations of skeletal muscle to endurance training may be the cu-
mulative effect of transient changes in gene expression during
recovery from individual exercise bouts [32]. However, it re-
mains to be determined whether the product of the gene studied
is required for downstream adaptive events in skeletal muscle
during and/or after exercise.
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